409 research outputs found

    Reliability analysis of dynamic systems by translating temporal fault trees into Bayesian networks

    Get PDF
    Classical combinatorial fault trees can be used to assess combinations of failures but are unable to capture sequences of faults, which are important in complex dynamic systems. A number of proposed techniques extend fault tree analysis for dynamic systems. One of such technique, Pandora, introduces temporal gates to capture the sequencing of events and allows qualitative analysis of temporal fault trees. Pandora can be easily integrated in model-based design and analysis techniques. It is, therefore, useful to explore the possible avenues for quantitative analysis of Pandora temporal fault trees, and we identify Bayesian Networks as a possible framework for such analysis. We describe how Pandora fault trees can be translated to Bayesian Networks for dynamic dependability analysis and demonstrate the process on a simplified fuel system model. The conversion facilitates predictive reliability analysis of Pandora fault trees, but also opens the way for post-hoc diagnostic analysis of failures

    Stage-specific control of oligodendrocyte survival and morphogenesis by TDP-43

    Get PDF
    Generation of oligodendrocytes in the adult brain enables both adaptive changes in neural circuits and regeneration of myelin sheaths destroyed by injury, disease, and normal aging. This transformation of oligodendrocyte precursor cells (OPCs) into myelinating oligodendrocytes requires processing of distinct mRNAs at different stages of cell maturation. Although mislocal- ization and aggregation of the RNA-binding protein, TDP-43, occur in both neurons and glia in neurodegenerative diseases, the consequences of TDP-43 loss within different stages of the oligo- dendrocyte lineage are not well understood. By performing stage-specific genetic inactivation of Tardbp in vivo, we show that oligodendrocyte lineage cells are differentially sensitive to loss of TDP- 43. While OPCs depend on TDP-43 for survival, with conditional deletion resulting in cascading cell loss followed by rapid regeneration to restore their density, oligodendrocytes become less sensitive to TDP-43 depletion as they mature. Deletion of TDP-43 early in the maturation process led to even- tual oligodendrocyte degeneration, seizures, and premature lethality, while oligodendrocytes that experienced late deletion survived and mice exhibited a normal lifespan. At both stages, TDP-43- deficient oligodendrocytes formed fewer and thinner myelin sheaths and extended new processes that inappropriately wrapped neuronal somata and blood vessels. Transcriptional analysis revealed that in the absence of TDP-43, key proteins involved in oligodendrocyte maturation and myelination were misspliced, leading to aberrant incorporation of cryptic exons. Inducible deletion of TDP-43 from oligodendrocytes in the adult central nervous system (CNS) induced the same progressive morphological changes and mice acquired profound hindlimb weakness, suggesting that loss of TDP-43 function in oligodendrocytes may contribute to neuronal dysfunction in neurodegenerative disease

    Ejecta deposit thickness, heat flow, and a critical ambiguity on the Moon

    Get PDF
    The Apollo lunar heat flow measurements gave values of 21 and 16 mW m?2 which, after extrapolation based on thorium abundances, yields a global estimate of 18 mW m?2. A refinement of the assumptions of the subsurface structure and the resulting focusing of heat flux later led to a revision of the global value to 12 mW m?2. We think that to date none of the models linking the Apollo heat flow measurements has sufficiently highlighted a critical source of ambiguity. Little attention has been paid to the full magnitude of the uncertainty in these measurements caused by near–surface Thorium abundances and the local thickness of the ejecta blanket generated by the Imbrium impact. In a simple study we show that lunar heat flow is contingent upon the thickness of the ejecta blanket of the hypothetical impact. A model with an exponential decrease of Th concentration with depth can explain the difference in surface heat flow between the Apollo 15 and the Apollo 17 measurements. A constant Thorium concentration within the ejecta layer amplifies this effect. The variation in local surface Th abundance, if taken as representative of the subsurface Th distribution within the ejecta blanket, amplifies the uncertainty. We conclude that further measurements are essential for making well-founded statements about the subsurface abundance of radioactive elements, mantle heat flux and the thermal state of the Moon

    Leveraging Existing Technology: Developing a Trusted Digital Repository for the U.S. Geological Survey

    Get PDF
    As Federal Government agencies in the United States pivot to increase access to scientific data (Sheehan, 2016), the U.S. Geological Survey (USGS) has made substantial progress (Kriesberg et al., 2017). USGS authors are required to make federally funded data publicly available in an approved data repository (USGS, 2016b). This type of public data product, known as a USGS data release, serves as a method for publishing reviewed and approved data. In this paper, we present major milestones in the approach the USGS took to transition an existing technology platform to a Trusted Digital Repository. We describe both the technical and the non-technical actions that contributed to a successful outcome.We highlight how initial workflows revealed patterns that were later automated, and the ways in which assessments and user feedback influenced design and implementation. The paper concludes with lessons learned, such as the importance of a community of practice, application programming interface (API)-driven technologies, iterative development, and user-centered design. This paper is intended to offer a potential roadmap for organizations pursuing similar goals. &nbsp

    An Unstaggered Constrained Transport Method for the 3D Ideal Magnetohydrodynamic Equations

    Full text link
    Numerical methods for solving the ideal magnetohydrodynamic (MHD) equations in more than one space dimension must either confront the challenge of controlling errors in the discrete divergence of the magnetic field, or else be faced with nonlinear numerical instabilities. One approach for controlling the discrete divergence is through a so-called constrained transport method, which is based on first predicting a magnetic field through a standard finite volume solver, and then correcting this field through the appropriate use of a magnetic vector potential. In this work we develop a constrained transport method for the 3D ideal MHD equations that is based on a high-resolution wave propagation scheme. Our proposed scheme is the 3D extension of the 2D scheme developed by Rossmanith [SIAM J. Sci. Comp. 28, 1766 (2006)], and is based on the high-resolution wave propagation method of Langseth and LeVeque [J. Comp. Phys. 165, 126 (2000)]. In particular, in our extension we take great care to maintain the three most important properties of the 2D scheme: (1) all quantities, including all components of the magnetic field and magnetic potential, are treated as cell-centered; (2) we develop a high-resolution wave propagation scheme for evolving the magnetic potential; and (3) we develop a wave limiting approach that is applied during the vector potential evolution, which controls unphysical oscillations in the magnetic field. One of the key numerical difficulties that is novel to 3D is that the transport equation that must be solved for the magnetic vector potential is only weakly hyperbolic. In presenting our numerical algorithm we describe how to numerically handle this problem of weak hyperbolicity, as well as how to choose an appropriate gauge condition. The resulting scheme is applied to several numerical test cases.Comment: 46 pages, 12 figure

    Deep-water flow over the Lomonosov Ridge in the Arctic Ocean

    Get PDF
    Author Posting. © American Meteorological Society, 2005. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 35 (2005): 1489–1493, doi:10.1175/JPO2765.1.The Arctic Ocean likely impacts global climate through its effect on the rate of deep-water formation and the subsequent influence on global thermohaline circulation. Here, the renewal of the deep waters in the isolated Canadian Basin is quanitified. Using hydraulic theory and hydrographic observations, the authors calculate the magnitude of this renewal where circumstances have thus far prevented direct measurements. A volume flow rate of Q = 0.25 ± 0.15 Sv (Sv ≡ 106 m3s−1) from the Eurasian Basin to the Canadian Basin via a deep gap in the dividing Lomonosov Ridge is estimated. Deep-water renewal time estimates based on this flow are consistent with 14C isolation ages. The flow is sufficiently large that it has a greater impact on the Canadian Basin deep water than either the geothermal heat flux or diffusive fluxes at the deep-water boundaries.Financial support was provided to P. Winsor from NSF OPP- 0352628
    • …
    corecore